DPP - 3

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/37

https://youtu.be/knqpqkTJX7Y

https://physicsaholics.com/note/notesDetalis/49

Q 1. Three particles of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}$ and 3 kg are situated at the comers of an equilateral triangle move at speed $6 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$ respectively. Each particle maintains a direction towards the particle at the next comer symmetrically. Find velocity of CM of the system at this instant

(a) $3 \mathrm{~m} / \mathrm{s}$
(b) $5 \mathrm{~m} / \mathrm{s}$
(c) $6 \mathrm{~m} / \mathrm{s}$
(d) zero

Q 2. Four particles of masses $1 \mathrm{~kg}, 2 \mathrm{~kg}, 3 \mathrm{~kg}$, and 4 kg are situated at the corners of a square and moving at speed $3 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}, 1 \mathrm{~m} / \mathrm{s}$ and $2 \mathrm{~m} / \mathrm{s}$ respectively. Each particle maintains a direction towards the particle at the next comer symmetrically. The speed of the com at this instant is
(a) $3 \mathrm{~m} / \mathrm{s}$
(b) $5 \mathrm{~m} / \mathrm{s}$
(c) $6 \mathrm{~m} / \mathrm{s}$
(d) zero

Q 3. The velocity of center of mass of the system as shown in the figure :-

(a) $\left(\frac{2-2 \sqrt{3}}{3}\right) \hat{\imath}-\left(\frac{1}{3}\right) \hat{\jmath}$
(b) $\left(\frac{2+2 \sqrt{3}}{3}\right) \hat{\imath}-\left(\frac{2}{3}\right) \hat{\jmath}$
(c) $4 \hat{\imath}$
(d) none of these

Q 4. Two particles of mass 1 kg and 2 kg are moving along the same line with speeds $2 \mathrm{~m} / \mathrm{s}$ and $4 \mathrm{~m} / \mathrm{s}$ respectively. Calculate the speed of the center of mass of the system if both the particles are moving in the same direction
(a) $10 \mathrm{~m} / \mathrm{s}$
(b) $3 \mathrm{~m} / \mathrm{s}$
(c) $\frac{10}{3} \mathrm{~m} / \mathrm{s}$
(d) $\frac{3}{10} \mathrm{~m} / \mathrm{s}$

Q 5. Two bodies of masses 2 kg and 1 kg are moving along the same line with speeds $2 \mathrm{~m} / \mathrm{s}$ and $5 \mathrm{~m} / \mathrm{s}$ respectively. What is the speed of the center of mass of the system if the two bodies are moving in opposite directions?
(a) $3 \mathrm{~m} / \mathrm{s}$
(b) $1 \mathrm{~m} / \mathrm{s}$
(c) $\frac{2}{3} \mathrm{~m} / \mathrm{s}$
(d) $\frac{1}{3} \mathrm{~m} / \mathrm{s}$

Q 6. Two particles of masses 2 kg and 4 kg are approaching each other with acceleration ${ }^{`} 1$ $\mathrm{m} / \mathrm{s}^{2 `}$ and ${ }^{`} 2 \mathrm{~m} / \mathrm{s}^{2 `}$, respectively, on a smooth horizontal surface. Find the magnitude of acceleration of center of mass of the system
(a) $1 \mathrm{~m} / \mathrm{s}^{2}$
(b) $2 \mathrm{~m} / \mathrm{s}^{2}$
(c) $3 \mathrm{~m} / \mathrm{s}^{2}$
(d) $4 m / s^{2}$

Q 7. Initially system is in rest and an external force F is applied on mass m. Then the displacement of the center of mass of system at time t is:

(a) $\frac{F t^{2}}{2 m}$
(b) $\frac{\sqrt{\mathrm{t}^{2}}}{3 m}$
(c) $\frac{F t^{2}}{4 m}$
(d) $\frac{F t^{2}}{m}$

Q 8. A body of mass 2.5 kg is subjected other forces shown in figure. Find the acceleration (approx.) of the Centre of mass

(a) $2.1 \mathrm{~m} / \mathrm{s}^{2}$
(b) $3.5 \mathrm{~m} / \mathrm{s}^{2}$
(c) $0.7 \mathrm{~m} / \mathrm{s}^{2}$
(d) $1.5 \mathrm{~m} / \mathrm{s}^{2}$

Q 9. Two bodies of mass 3 kg and 4 kg are suspended at the ends of massless string passing over a frictionless pulley. The acceleration of the center of mass of system is $(\mathrm{g}=9.8$ m / s^{2})
(a) $\frac{g}{7}$ downward
(b) $\frac{g}{49}$ downward
(c) $\frac{g}{14}$ downward
(d) $\frac{g}{14}$ upward

Q 10. In a system of particles 8 kg mass is subjected to a force of 16 N along + ve x -axis and another 8 kg mass is subjected to a force of 8 N along + ve y-axis. The magnitude of acceleration of center of mass and the angle made by it with x-axis are given respectively by
(a) $\frac{\sqrt{5}}{2} m / s^{2}, \theta=45^{\circ}$
(b) $3 \sqrt{5} m / s^{2}, \theta=\tan ^{-1}\left(\frac{2}{3}\right)$
(c) $\frac{\sqrt{5}}{2} m / \mathrm{s}^{2}, \theta=\tan ^{-1}\left(\frac{1}{2}\right)$
(d) $1 m / s^{2}, \theta=\tan ^{-1}(\sqrt{3})$

Q 11. Two bodies of masses 5 kg and 3 kg are moving towards each other with $2 \mathrm{~m} / \mathrm{s}$ and $4 \mathrm{~m} / \mathrm{s}$ respectively. Then velocity of center of mass is
(a) $0.25 \mathrm{~m} / \mathrm{s}$ towards 3 kg
(b) $0.5 \mathrm{~m} / \mathrm{s}$ towards 5 kg
(c) $0.25 \mathrm{~m} / \mathrm{s}$ towards 5 kg
(d) $0.5 \mathrm{~m} / \mathrm{s}$ towards 3 kg

Q 12. Two identical particles move towards each other with velocity 2 v and v respectively. The speed of center of mass is
(a) V
(b) $\frac{v}{3}$
(c) $\frac{\mathrm{V}}{2}$
(d) zero

Answer Key

Q. 1	d	Q. 2	d	Q. 3	b	Q. 4	c	Q. 5	d
Q. 6	a	Q. 7	c	Q. 8	d	Q. 9	b	Q. 10	c
Q. 11	c	Q. 12	c						

